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LElTER TO THE EDITOR 
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Abstract. For arbitrary functionsf,,f, andf, the anharmonic oscillator x + f , ( r ) x + f 2 (  t ) x +  
f 3 ( r ) x 3  = 0 cannot be solved in closed form (i.e. the general solution cannot be expressed 
as elliptic functions). We apply the PainlevC test to obtain the constraint on the functions 
f,, f 2  and f3 for which the equation passes the test. The constraint on f,, f 2  and f, (i.e. the 
differential equation which f,, fr and f, obey) is discussed and solutions are given. 

For non-linear ordinary and partial differential equations the general solution usually 
cannot be given explicitly. It is desirable to have an approach to find out whether a 
given non-linear differential equation can be explicitly solved. We investigate the 
non-linear anharmonic oscillators 

x +f,( r)X +fi( t)x +&( r)x' = 0 (1) 

where f,, f2 and & are smooth functions and x = dx/dt. We assume that f3 # 0. For 
arbitrary functions fi, f 2  and & the non-linear equation (1) cannot be explictly solved. 
We would like to find the constraint on f,, f2 and & such that (1) can be solved. 

Before we study the general case (1) we give a brief review of the special case 

x + c,x + c2x + x3 = 0 (2) 

where c1 and c2 are constants. The equation of motion given by (2) can be derived 
from the explicitly time-dependent Lagrangian 

L(t, x(t) ,  a ( ? ) )  =tecl 'x2-ec~'V(x) (3) 

where 

(4) 

The function f is given by f (x)  = c2x + x3. The corresponding Hamiltonian is given by 

H(r, x( t ) ,p ( r ) )  =te-cl'p2+ecl'V(x). ( 5 )  

We apply two different approaches to find the constraint on c ,  and c 2 .  In the first 
approach we transform (2) to an integrable equation. The transformations impose 
conditions on c ,  and c 2 .  The second approach is Kowalewski's asymptotic method 
(also called the PainlevC test or singular point analysis (compare [ l ]  and references 
therein)). We show that both approaches lead to the same constraints on c1 and cz 
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for (2). We assume that c1 # 0. If c1 = 0, then the general solution of (2) can be given 
in terms of Jacobi elliptic functions [2]. 

In the first approach we start from the ansatz 

x(t) = u ( t ( t ) ) u ( t )  (6) 

and determine the functions 6 and Y so that U satisfies 

d2u -+ au3 = 0 
d t 2  

(7) 

where a is a constant. Equation (7) is integrable in terms of Jacobi elliptic functions. 
Inserting ansatz (6) into (2) yields 

U " P Y +  U'[&+ ((2d+ C , Y ) ] +  u[i;+ c,d+ C , V ] +  U 3 Y 3  = 0 (8) 

(9) 

{U+ ( ( 2 d S  CIU) = 0. (10) 

u " ~ + u 3 Y 2 = o  ( 1 1 )  

where U'= du/dt .  Consequently we require that 

i; + Cl d + c221= 0 

and 

If Y and 6 satisfy (9) and (10) then (8) takes the form 

where we have assumed that Y # 0. In order to obtain (7) from ( 1  1 )  we have to require 
that 

k2 = k2v2 (12) 

v (  t )  = A e'l' + B er2' (13) 

where k is a constant (k # 0) with a = 1/  k2. The solution to (9) is given by 

where A and B are the constants of integration and rI and r2 are the two (in general 
different) roots of 

r2 + c1 r + c2 = 0. 

3d  + C1Y = O 

(14) 

(15) 

Inserting (12) into (10) yields 

where we have assumed that U #  0. Inserting the general solutions (13) of (9) into (15) 
we obtain 

3(Arl e'l' 4 Br, e'2') + cl(A e'l' + B e',') = 0. (16) 

3rl + c1 = 0. (17a) 

3r2+ c1 = 0. (17b) 

2 C :  - 9c2 = 0. (18) 

Consequently 

From (14) we obtain r1,2 = - 4 2  f (c:/4 - c ~ ) ~ " .  Therefore 

Consequently, if condition (18) is satisfied the general solution of (2) can be found 
with the help of Jacobi elliptic functions. 
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Let us now apply Kowalewski’s asymptotic method (compare [l] and references 
therein). Equation (2) is considered in the complex domain with c, and c2 real. For 
the sake of simplicity we do not change the notation. Inserting the Laurent expansion 

00 

x( t) = U j (  t - t l ) J - n  
j = O  

where tl  denotes the pole position, yields n = 1 and U ;  = -2. The expansion coefficients 
a , ,  a2 and u3 are determined by 

3alao= c1 

3a*ao=-c2-3a: (20b) 

4a3= c , a2+c2a l+a~+6aoa la2 .  (20c) 

c32c: - 9c2) = 0. (21) 

The expansion coefficient a4 is arbitrary in expansion (19) if 

This means r = 4 is a so-called resonance (compare [ 13 and references therein). The 
solution c1 = 0 is the trivial case. The condition 2c: = 9c2 is the same as we obtained 
in the first approach. To summarise: if 2c: = 9c2, then the general solution of (2) can 
be expressed in terms of Jacobi elliptic functions. For this case (i.e. 2c: = 9c2) we can 
find an explicitly time-dependent first integral, namely 

I ( t ,x ( t ) ,  x(t))=exp($c,t)  x+- s i x 4  . (22) [( ‘;’)’ 1 
Notice that the explicitly time-dependent Hamiltonian (5) is not a first integral. 

To discuss the motion we consider (2) in the phase plane (x, y )  with x = y. We 
have to distinguish between the cases c2 3 0 and c2 < 0. We assume that c1 > 0. For 
c2> 0 we find one stable time-independent solution, namely (0,O). Since c1 > 0 all 
trajectories tend to this solution. For c 2 < 0  we obtain the following three time- 
independent solutions: (0, 0), ( + ( - c ~ ) ” ~ ,  0), ( - ( - c ~ ) ” ~ ,  0). Then the time-independent 
solution (0,O) is unstable, whereas the other two are stable. Depending on the initial 
value (x( t = 0), y (  t = 0)) the trajectories tend to one of these stable time-independent 
solutions. 

Let us now consider (1). Here we apply Kowalewski’s asymptotic method. Inserting 
the ansatz (19) into (1) we find at the resonance r = 4 the condition 

9fy’f: - 54fp’f;f: + 18fi3’f:f1 - 36(f,N)’f:+ 192f;(f;)’f3 -- 78f,Nf;f:f, + 3 6 f ; l f : f 2  

+3f:f;f:- 1 12(f;I4+ 64(f;)3f3f~ +6(f;)*f;f:  -72(f;)’f:f2 

+ 90f;f:f: - 27f;fY.f: - 57f;f V:f I + 72f:f:f2fl 

+36(f’,)*f:-36f’,f:f2+60fIf:f:-36f:f2f:+8f:f:=O (23) 

- 14f;f:f: - 54f;f;‘- 90f;f:f1 + 18f13’f:+ 54f;f:fl 

where f ’= dfldt and f (4) = f ”” = d4f/dt4. This means if this condition is satisfied then 
the expansion coefficient a4 is arbitrary. Let us now discuss (23). It is obvious that 
we cannot give the general solution to (23). Thus we discuss special cases. 
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Case I. Let f l (  t )  = c1, f2( t )  = c 2 ,  and f3( t )  = c 3 ,  where c1, c2 and c3 are constants 
( c3 # 0). Then we obtain 

c:c:(2c:-9c2) = 0. (24) 
Thus we find condition (21) together with c3 arbitrary. 

Case 11. Let fl = 0 and f3 = 1 .  Then we find 

f ;  = 0. 

The general solution is given by f2( t )  = At + B, where A and B are the constants of 
integration. Now equation (1) takes the form 

x+  ( A +  B t ) x  +x3 = 0. (26) 
This is a special case of the second Painlev6 transcendent. The solution has no branch 
points, and are therefore uniform functions in t (see [l-31). 

Case 111. Let f2( t )  = 0 and f3( t )  = 1. Then (23) takes the form 

fr + 3fff1 + 2(fi)2 +ylf:(f~)’+ $f;‘ = 0. (27) 

f 1 ( t ) = 3 / t  f l (  t )  = 3/2t. (28) 

This equation admits the particular solutions 

Thus (27) admits more than one branch in the Painlev6 analysis. Equation (27) does 
not pass the PainlevC test, because it admits non-integer resonances (rational reson- 
ances). However, the equation (27) passes the so-called weak PainlevC test (see [ l ]  
and references therein). 

Case IV. A case where fl,  f2 and f3 are non-constant and satisfy (23) is given by 

fl(t) = 1/4t f2( t )  = 1/8t2 f3( t )  = 1/32t2. (29) 
Equation ( 1 )  together with the functions given by (29) arises in the PainlevC analysis 
of external driven anharmonic oscillators [4]. Equation ( 1 )  together with the functions 
given by (29) can be integrated exactly in terms of elliptic functions. 

Case V. Equation (1) together with 

f l ( t )  = 1/4t f2( t )  = 1/8t2 f3(t)= -1/8t2 (30) 
occurs in the PainlevC analysis of the Lorenz model [5]. The functions fl,  f2 and f3 
satisfy (23). Then ( 1 )  together with the functions given by (30) can be solved in terms 
of elliptic functions as follows. Applying the transformation x( t )  = t114g( t1’4) to ( 1 )  
where fl, f2 and f3 are given by (30) yields d2g/ds2 = 2g3 with s = t114. 

Equation ( 1 )  also arises in this study of the non-linear partial differential equation 

u7e = u3. 

This equation admits the Lie symmetry vector field 

a a a  
a77 a t  au 

-7- -5-+ U-. 

This Lie symmetry vector field corresponds to the scale invariance of (31), i.e. 

& + & - I . $  U + &U. (33) -1 
7 7 + &  77 

The symmetry vector field (32) leads to the similarity ansatz 

(34) 
1 
5 477, 5 )  =-f(s) 
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with the similarity variable s = ~ / t ,  Inserting this ansatz into (31) gives 

d2f 2 df 1 
ds2 s ds s 
-+- -+-f3 =o. (35) 

Consequently, we have f,( s) = 2/s, f2( s )  = 0 and f3( s) = 1/ s. These functions satisfy 
(23) (with s +  t ) .  Therefore, (35) passes the Painlev6 test. 
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